groups. A combination of high power and high tidal volume increased the gene expression of...tional response in the 24-hour postoperative period. In the amisulpride group, complete response occurred in 57% patients. In the control group, 46% of patients experienced complete response. Adverse events and laboratory and ECG abnormalities were no more frequent with amisulpride than placebo. Kranke et al. concluded that intravenous amisulpride was safe and effective in preventing postoperative nausea and vomiting in adult patients when given in combination with an anti-emetic from another class.

Next, we look at the peroperative use of positive end-expiratory pressure to prevent atelectasis during general anesthesia. The combination of low tidal volumes, recruitment maneuvers, and positive end-expiratory pressure (PEEP) is a well-established technique in children. But their relative benefit is unknown. Dr. Erlend Örberg of Västerås and Köping Hospital, Sweden, and colleagues there and elsewhere in Sweden, tested the hypothesis that positive end-expiratory pressure alone would be sufficient to limit atelectasis formation during non-abdominal surgery. For this evaluation-blinded trial, patients randomly assigned to general anesthesia were randomized to 7-9 cm H2O PEEP or zero end-expiratory pressure. The primary endpoint was complete response, defined as no emesis or use of rescue medication in the 24-hour postoperative period. In the amisulpride group, complete response occurred in 57% patients. In the control group, 46% of patients experienced complete response. Adverse events and laboratory and ECG abnormalities were no more frequent with amisulpride than placebo. Kranke et al. concluded that intravenous amisulpride was safe and effective in preventing postoperative nausea and vomiting in adult patients when given in combination with an anti-emetic from another class.

We continue with more anesthetic pharmacology, specifically addressing volatile anes-

Finally, our review article this month focuses on the use of imaging in pain, an impor-

Information about the central nervous system in the development, maintenance, and overall experience of chronic pain. Structural, chemical and functional neuroimaging has helped elucidate central nervous system contributors to chronic pain in humans. Neuroimaging of pain has also provided a tool for increasing our understanding of how pharmacological and psychological therapies improve chronic pain. To date, findings from neuroimaging pain research have benefited clinical practice by providing clinicians with an educational framework to discuss with patients the biopsychosocial nature of pain. Advances in imaging technology, such as functional magnetic stimulation, real-time functional magnetic resonance imaging and neurofeedback may provide additional benefits for clinical practice. In the future, with standardization and validation, brain imaging could provide objective biomarkers of chronic pain, and guide treatment decisions.

Thanks for joining me for this brief exploration of the exciting work being done in ANESTHESIOLOGY. I’ll be back in a few weeks with highlights from the July issue.